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ABSTRACT D

-~ A class of texture measures is introduced based on first-
order statistics derived from edges in the image. These measures
are related to the generalized cooccurrence features of Davis
et al. They yield good discriminations among textures on per-
ceptually plausible grounds. .
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1. Introduction

A wide variety of measures for discriminating visual tex-
tures have been studied; see [l1] for a review. Traditional
approaches involve measures based on the autocorrelation, or
equivalently, on the Fourier power spectrum; measures derived
from second-order gray level probability densities (gray level
cooccurrence matrices); and measures derived from first-order
probability densities of local feature values (e.g., dgray level
difference nistograms). These measures are computed on a pixel
by pixel basis; they do not take into account the fact that
perceptually, textures often appear to be composed of "primitives"
(i.e., uniform microregions).

Maleson et al. [2] proposed an approach to texture analysis
based on extracting primitives and computing their properties
(e.g., average gray level, area, eccentricity, etc.). He con-
sidered texture measures derived from first- or second-order
probability densities of such properties, where the second-order
densities are defined in terms of neighboring pairs of primitives.
Wang et al. [3] investigated a similar approach in which simple
methods of extracting the primitives were used (e.g., thresholding
at a percentile, or adaptive quantization), and Hong et al. (4]
studied an edge-based method of primitive extraction.

In previous primitive-based approaches, it is assumed that
the primitives are small connected regions, and properties of
these regions are used as a basis for defining texture measures.

In many situations, this assumption is not entirely realistic.




We can perceive primitives in a texture if the texture contains
edges that link into local "clusters," even though these clus-
ters of edges do not surround connected regions. Thus, it would
be better not to use properties of primitives (area, average
gray level, etc.) that depend on the primitives being extracted
as connected regions.

This paper proposes a class of texture measures derived from
properties of edges and pairs of edges detected in the given
texture. The properties include the curvature of an edge, as
well as the average gray level, distance, contrast difference
and slope difference between a pair of facing edges. Texture
measures are derived from the first-order probability densities
of these properties. These measures yield good discrimination
among textures based on perceptually plausible differences among
them.

There is a close relationship between our edge-based texture
measures and the measures based on generalized cooccurrence
matrices (GCMs) introduced by Davis et al. [5~6; see also 7).
The GCM approach is based on cooccurrences of local properties
satisfying given spatial constraint predicates. In particular,
GCMs have usually been defined in terms of pairs of edges having
given orientations and occurring in given relative positions, e.g.,
extending or facing each other. Our measures too are defined
in terms of edges, and make use of their orientation and relative
position; but they also use other properties of the edges, and

involve first-order rather than second-order probability

densities.




Section 2 of this paper defines a set of edge-based tex-
ture measures, and Section 3 illustrates their ability to dis-

criminate among various types of textures.
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2.

Measures
Two types of measures were used in our experiments; one
type was derived from pairs of "facing" edges, and the other
from edge curvature. The computation of these measures is
described in the following paragraphs.
2.1. Edge pairs

To reduce the number of edges from which the edge pair
measures are derived, the image is first smoothed using two
iterations of median filtering over a 3-by-3 neighborhood of
each pixel, and the gray levels are linearly rescaled (if
necessary) to the range 0-31. Edges are then detected by apply-

ing the eight 3-by-3 masks

1 1 1 1 1 0
J 0 0' 1 O-l,..
-1 -1 -1 0 -1 -1

at every pixel, picking the mask yielding the highest output
. value, and thresholding the result at 11 (i.e., discarding
values = 10). The same masks (with various thresholds) were
used in the edge-based texture primitive extraction experiments
of [4]. The slope of a detected edge is defined by the mask
that gives the highest output. In addition to the thresholding,;
nonmaxima are suppressed in the gradient direction - i.e., an
edge response is discarded if there is a nigher response at a
neighboring pixel in the direction perpendicular to the edge.
o Edge pairs are now identified by searching along the gra-

dient direction out to a prespecified distance from each pixel;

in our experiments, the distance was 1l0. We are interested in




pairs of edges that are on opposite sides of a "primitive":
hence we want them to have approximately opposite slopes.
Specifically, when the startingy edge pixel has slope 45i°,
we consider that ar. edge pair has been detected if the edge
found by the searcih has slope 45(i+3)°, 45(i+4)°, or 45(i+5)°
modulo 360°. Such edge pairs are sometimes called "anti-
parallel", because their slopes differ by approximately 180°.
The search takes place on both the dark side and the light
side of each edge pixel.
For each edge pair, we compute the following quantities:
1) The distance d(1=d=10) between the edges
2) The average gray level u on the line segment between
the edges
3) The standard deviation ¢ of gray level on that line
segment
4) The absolute difference § between the slopes of the
edges (6=0° or 45°)
5) The absoluie difference A between the contrasts of the
edges
Each of these uantities is computed separately for (dge pairs
found by searching on the light side and on the dark side of
each edge pixel. We will denote the light-side quantities by
unprimed symbols and the dark-side quantities by primed symbols

(@¢',u',0',8',A'"). Before computation of p and ¢ (or u' and o'),

histogram flattening is applied to the image.




The means of the primed and unprimed quantities just
defined, computed over the given texture sample, will be
used as texture measures. These measures will be denoted by
Md, Mpy,Mo,M$, and MA (with and without primes). The variances
of the distance measures (d and 4') will also be used; these
will be denoted by Vd and Vd'. However, it turns out that they
do not perform as well as the means for most of the textures

used in our experiments.




2.2. Curvature

The curvature-based measures are computed by least-squares
fitting a quadratic surface to the gray levels in a 5~by-5 neigh-
borhood of each pixel, after first median filtering and rescaling
the image as in Section 2.1. This fitted surface defines the
gradient magnitude and direction and the curvature (=rate of
change of gradient direction) at the given pixel. Specifically,
if the x and y partial derivatives of the fitted surface f are

b

f_ and fy' respectively, then the gradient magnitude is /f2+f2 '
X'ty

the gradient direction is tan—l(fy/fx), and the curvature is

£24f fF22f £ £

fxx y yx X X VY Xy
(£2+£2)3/2
x ty

(The direction and curvature are in radians; they are converted
to degrees by multiplying them by 180°/m.) For further details
on how these results are derived, see [8].

Nonmaximum suppression is then performed on the gradient mag-
nitudes out to distance 2 in the gradient direction - in other
words, a magnitude is ignored if a higher magnitude exists within
distance 2 of it in that direction (on either side). Using
the absolute curvatures at these gradient maxima, we compute two
measures: the mean MC and the variance VC. Two other measures
(denoted by primes) a}e computed using the curvatures "weighted"
by their corresponding gradient magnitudes. Specifically, we
construct a histogram of the absolute curvatures in which each
pixel contributes a count to the histogram equal to the gradient

magnitude of that pixel, rather than a count of 1. We then

compute tue mean MC' and the variance VC' of the histogram.




3. Experiments

To study the power of these measures to discriminate among
textures, we applied them to samples of three geoclogical
terrain types: Mississippian limestone and shale, lower
Pennsylvanian shale, and Pennsylvanian sandstone and shale, and
two textures (raffia and sand) from Brodatz's album [9]; these
textures have also been used in earlier texture classification
experiments (3,4,7,10]. Each sample was 64 by 64 pixels; there
were eight samples each of the terrain textures and four each
of the Brodatz textures.

The terrain samples are shown in Figures 1-3, and the
Brodatz samples in Figures 4-5; all samples are shown after
median filtering and gray level rescaling. The corresponding
thresholded, nonmaximum-suppressed edges are shown in Figures
6-10. The effects of the median filtering step are illustrated
in Figure 11, in which tne left column shows one of the terrain
samples (the sixth one in Figure 2) after 0,1, and 2 iterations
of median filtering followed by gray level rescaling. The
center column shows the edge magnitudes after thresholding, and
the right column shows them after nonmaximum suppression. Sig-
nificant "cleaning" is evident on the edges obtained after medi-
an filtering.

Figure 12 shows scatter plots of the values of each of our
measures for the terrain samples. 1In each plot, the three
terrain types are denoted by M, L, and P, respectively; a "2"

rneans that two samples yielded the same measured value. For

>R - - P e e e e e . e




comparison, scatter plots of the values of two measures based
on second-order gray level probability densities are also given.
(The joint gray level probabilities for a pair of pixels at
relative displacement (1,0) were computed; CONX is the moment
of inertia of the matrix of these probabilities around its
main diagonal. COWNY 1s defined analogously using displacement
(0,1). Both CONX and CONY performed very well in earlier
studies [10] using the terrain textures.) Scatter plots are
also given for two of the measures, My and My', when histogram
fiattening was not used in computing them; we see that this
results in much poorer separation of the classes.
Each measure was evaluated for a given pair of textures
by the largest number of samples of the two textures that
could be correctly classified by thresholding the value of
the measure. The results are shown in the first three columns
of Table 1. We see that
a) For each pair of textures, three or more of the measures
yield 14 or 15 out of lé correct.
b) The variance features do not perform any better than the
mean features.
c) The features M8 and Mé6', which (like the features used
by Davis et al.) are based on pairs of edge slopes, per-
form relatively poorly.

d) The CZONX and CONY features also perform relatively poorly.




Moreover, the values of the measures can often be directly
related to visual properties of the textures, although the
differences for these terrain textures are relatively slight.
Figure 13 shows analogous plots for the Brodatz samples
(R=raffia,S=sand). Here, as summarized in the fourth column
of Table 1, many of the measures yield perfect separation {(and
as we see from the scatter plots, often very wide separation)
between raffia and sand; but the M§ and M§', CONX and CONY
measures do not. The perceptual significance of the features
is usually quite obvious in this case. 1In another experiment,
the Brodatz raffia texture was classified against all three
terrain textures, and many features yielded perfect (28 out

of 28) classification, including MC, MC', VC', and CONX.




4. Concluding remarks

The texture measures proposed in this paper are relatively
easy to compute, since they are directly derived from edges and
pairs of edges, and do not require explicit extraction of
"primitives" as connected regions. At the same time, they are
mathematically simple, being based on means of differences
rather than on second-order statistics, and they also have sim-~
ple perceptual interpretations. In our experiments, these
measures performed better than various standard measures based
on pairs of gray levels or pairs of edge orientations. For
all these reasons, the proposed measures seem to deserve seri-

ous consideration for texture classification and analysis appli-

cations.




Measure M/L M/P L/P R/S
Md 11 *14 13 5
Ma' *15 *14 11 8
My 12 *14 10 8
My’ *14 13 11 8
Mo 12 *14 13 5
Mo *15 *15 11 8
M$§ 11 11 10 7
M6 12 12 11 6
MA 12 13 *14 7
MA! 12 11 *14 8
MC 11 13 *14 8
MC® 11 *14 *14 8
vd 11 11 9 8
va' 11 13 11 6
vC 12 12 13 7
vC' 10 12 13 8
CONX 13 13 10 7
CONY 11 13 12 6

Table 1. Number of samples of a given pair of textures that were
correctly classified by each measure using the best
possible threshold.
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Figures 4-5.
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Figures 6-8. Edges for
Figs. 1-3.




Figures 9-10. Edges for
Figs. 4-5.

Figure 11. Effects of median
filtering.
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